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Abstract: In this paper, Bianchi Type –I Cosmological Model is investigated in Wesson’s scale invariant theory of gravitation. The 

matter field is considered in the form of viscous fluid.  The field equations for scale invariant theory have been solved by using the 

equation of state. The gauge function depends on time coordinate only (Dirac gauge). Some physical and kinematical properties of 

the models are also discussed. It is found that the model admits viscous fluid distribution in scale invariant theory of gravitation. 
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1. Introduction 

 

Investigation of Bianchi type plays a vital role in the description of early stages of evolution of the universe. In particular Bianchi 

type –I present a simple picture of spatially homogeneous models of the universe. Mohanty and Daud [19] have studied Bianchi 

type –I cosmological model with gauge function in vacuum wherein they have shown that the model  reduces to Kasner [7] one, 

when cosmological constant is zero and the model isotropizes as in Einstein’s theory for a nonzero cosmological constant. Mishra 

[10] has obtained static plane symmetric cosmological models filled with perfect fluid in Wesson’s [21, 22] theory of gravitation 

and  

also has studied the Bianchi type I cosmological model in this theory. 

Beesham [3, 4, 5], Mohanty and Mishra [17, 18], Mishra [11, 12], Khadekar and Avachar [8], Mishra and Sahoo [13, 14, 15] have 

investigated several aspects of scale invariant theory. Recently Mishra et al. [16] has constructed Bianchi type III space-time in scale 

invariant theory with dark energy.  

As far as our information goes there is no work in Bianchi type –I model with viscous fluid in Wesson’s scale invariant theory of 

gravitation. In the observable universe, viscosity plays an important role in galaxy formation and modified the nature of singularity 

([Misner, [9], Belinski and Khalatnikov [2]). Moreover it increases high degree of isotropy as observed in cosmic microwave 

background radiation (Weinberg [20]). 

With this fact in mind, in this paper, we have considered and studied Bianchi type –I space –time in the presence of imperfect fluid 

distribution (viscous fluid) with Dirac guage function 𝛽 = 𝛽(𝑐𝑡) in Wesson’s scale invariant theory of gravitation.  

In section 2, we obtain the field equations in Wesson’s scale invariant theory of gravitation for Bianchi type –I space –time in the 

presence of viscous fluid distributions. In section 3, the field equations of Wesson’s theory are solved to obtained Bianchi type –I 

viscous fluid model in scale invariant theory. Section 4 is devoted to the discussion of physical properties of the model, while 

section 5 contains some conclusions. 

 

2. Metric and Field Equations 
 

We consider Bianchi type –I metric with gauge function  𝛽 = 𝛽(𝑐𝑡) as (Ellis and McCallum, 1969 [6]) 

 

                         𝑑𝑆𝑊
2 = 𝛽2𝑑𝑆𝐸

2                                          (1) 

with  

     𝑑𝑆𝐸
2 = −𝑐2𝑑𝑡2 + 𝐴2𝑑𝑥2 + 𝐵2 𝑑𝑦2 + 𝑑𝑧2 ,                      (2) 

 

where 𝐴 = 𝐴 𝑡 , 𝐵 = 𝐵(𝑡) and 𝑑𝑆𝑊  and 𝑑𝑆𝐸  are the intervals in Wesson and Einstein theories respectively. 

The field equations for scale invariant theory (Wesson, [21, 22]) with Dirac gauge are 

 

                            𝐺𝑖𝑗 + 2
𝛽;𝑖𝑗

𝛽
− 4

𝛽,𝑖𝛽,𝑗

𝛽2 +  𝑔𝑎𝑏 𝛽,𝑎𝛽,𝑏

𝛽2 − 2𝑔𝑎𝑏 𝛽;𝑎𝑏

𝛽
 𝑔𝑖𝑗 + 𝛬0𝛽

2𝑔𝑖𝑗 = −𝜅𝑇𝑖𝑗 ,            (3) 

where 

                              𝐺𝑖𝑗 = 𝑅𝑖𝑗 −
1

2
𝑅𝑔𝑖𝑗 ,                                                   (4) 
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Here 𝐺𝑖𝑗  is the usual Einstein tensor, 𝑇𝑖𝑗  is the energy momentum tensor, 𝑅𝑖𝑗  is the Ricci tensor and 𝑅 is the R is the Ricci scalar. 

Also coma (,) and semicolon (;) denote partial and covariant differentiation respectively. The cosmological term 𝛬𝑔𝑖𝑗  of Einstein 

theory is now transformed to 𝛬0𝛽
2𝑔𝑖𝑗  in scale invariant theory with the dimensional constant 𝛬0. G and 𝜅 =

8𝜋𝐺

𝑐4  are respectively the 

Newtonian gravitational constant and Wesson gravitational constant. 

The energy momentum tensor for imperfect fluid with bulk viscosity in the form  

 

                    𝑇𝑖𝑗
𝑚 =  𝑝𝑚    + 𝜌𝑚𝑐2 𝑢𝑖𝑢𝑗 + 𝑝𝑚    𝑔𝑖𝑗                                              (5) 

together with 

    𝑔𝑖𝑗 𝑢
𝑖𝑢𝑗 = −1                                                                     (6) 

 

    𝑝𝑚    = 𝑝𝑚 − 𝜉𝜃                                                                     (7) 

 

where 𝜃 = 𝑢;𝑖
𝑖  and 𝑢𝑖  is the four velocity vector of the fluid. 𝜌𝑚  , 𝑝𝑚  and 𝜉 are energy density, proper isotropic pressure and bulk 

viscosity of the fluid respectively. 

The surviving components of the Einstein tensor (4) for the metric (2) are 

 

    𝐺11 =
𝐴2

𝑐2  2
𝐵44

𝐵
+

𝐵4
2

𝐵2                                                           (8) 

 

         𝐺22 = 𝐺33 =
𝐵2

𝑐2  
𝐴44

𝐴
+

𝐴4𝐵4

𝐴𝐵
+

𝐵44

𝐵
                                                  (9) 

 

               𝐺44 = −  2
𝐴4𝐵4

𝐴𝐵
+

𝐵4
2

𝐵2                                       (10) 

 

    𝜃 = 𝑢;𝑖
𝑖 =  

𝐴4

𝐴
+ 2

𝐵4

𝐵
                                             (11) 

Here 𝐴4 =
𝑑𝐴

𝑑𝑡
, etc. 

Using commoving coordinate system 𝑢𝑖 = 𝛿4
𝑖  and the metric (1), the field equations (3) can be expressed as  

 

                          𝐺11 = −𝜅𝑝 𝑚𝐴2 −
𝐴2

𝑐2  2
𝛽44

𝛽
−

𝛽4
2

𝛽2 + 4
𝛽4

𝛽
 
𝐵4

𝐵
 + 𝛬0𝛽

2𝑐2                   (12) 

 

                  𝐺22 = 𝐺33 = −𝜅𝑝 𝑚𝐵2 −
𝐵2

𝑐2  2
𝛽44

𝛽
−

𝛽4
2

𝛽2 + 2
𝛽4

𝛽
 
𝐴4

𝐴
+

𝐵4

𝐵
 + 𝛬0𝛽

2𝑐2               (13)  

    

                         𝐺44 = −𝜅𝜌𝑚𝑐4 +  3
𝛽4

2

𝛽2 + 2
𝛽4

𝛽
 
𝐴4

𝐴
+ 2

𝐵4

𝐵
 + 𝛬0𝛽

2𝑐2                         (14) 

 

In the usual way (Wesson, [21, 22]), Eq. (3) and Eqs. (12)-(14) suggest the definition of quantities 𝑝 𝑣  (vacuum pressure with bulk 

viscosity) and 𝜌𝑣  (vacuum density) that involves neither the Einstein tensor of conventional theory nor the properties of 

conventional matter. These two quantities can be obtained as  

 

                                     2
𝛽44

𝛽
−

𝛽4
2

𝛽2 + 4
𝛽4

𝛽
 
𝐵4

𝐵
 + 𝛬0𝛽

2𝑐2 = 𝜅𝑝 𝑣𝑐
2             (15) 

 

                       2
𝛽44

𝛽
−

𝛽4
2

𝛽2 + 2
𝛽4

𝛽
 
𝐴4

𝐴
+

𝐵4

𝐵
 + 𝛬0𝛽

2𝑐2 = 𝜅𝑝 𝑣𝑐
2                     (16) 

 

                      3
𝛽4

2

𝛽2 + 2
𝛽4

𝛽
 
𝐴4

𝐴
+ 2

𝐵4

𝐵
 + 𝛬0𝛽

2𝑐2 = −𝜅𝜌𝑣𝑐
4                 (17) 

where  

                  𝑝 𝑣 = 𝑝𝑣 − 𝜉𝜃.                                                       (18) 

 

Here the quantities 𝑝𝑣  and 𝜌𝑣  are vacuum pressure and vacuum density respectively. 

When there is no mater and the gauge function 𝛽 is a constant. Eqs. (15) – (17) give the relation  

 

    𝑐2𝜌𝑣 =
−𝑐4𝜆𝐺𝑅

8𝜋𝐺
= −𝑝 𝑣, i.e. 𝑐2𝜌𝑣 + 𝑝 𝑣 = 0                      (19) 
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which can be considered as the equation of state for vacuum. Here 𝜆𝐺𝑅 = 𝜆0𝛽
2 = constant and thus it is the cosmological constant 

in general relativity and 𝜅 = 8𝜋𝐺. Also  𝑝 𝑣  is dependent on constants 𝜆𝐺𝑅 , 𝐺 and 𝑐 and hence it is uniform in all directions. Thus 𝑝 𝑣 

is isotropic in nature and consistent only when  

 

                         𝐴 = 𝑘1𝐵                       (20) 

 

where 𝑘1 is a constant of integration. Without loss of generality, we take 𝑘1 = 1. 

Using Eqs. (11), (18) and (20) in (15)-(17) the pressure and energy density for the vacuum case can be obtained as  

 

                                       𝑝𝑣 =
1

𝜅𝑐2  2
𝛽44

𝛽
−

𝛽4
2

𝛽2 + 4
𝛽4

𝛽
 
𝐴4

𝐴
 + 𝛬0𝛽

2𝑐2 + 3𝜉𝑐2𝜅
𝐴4

𝐴
                          (21) 

 

                                     𝜌𝑣 = −
1

𝜅𝑐4  6
𝛽4

𝛽
 
𝐴4

𝐴
 + 3

𝛽4
2

𝛽2 + 𝛬0𝛽
2𝑐2                                 (22) 

 

where 𝑝𝑣  and 𝜌𝑣  relate to the properties of vacuum only in conventional physics. Following Wesson (21, 22), the total pressure 𝑝𝑡  

and total density 𝜌𝑡  can be defined as 

 

                                     𝑝 𝑡 = 𝑝 𝑚 + 𝑝 𝑣 = 𝑝𝑡 − 𝜉𝜃 =  𝑝𝑚 − 𝜉𝜃 +  𝑝𝑣 − 𝜉𝜃 ⇒ 𝑝𝑡 = 𝑝𝑚 + 𝑝𝑣 − 𝜉𝜃      (23) 

 

      𝜌𝑡 = 𝜌𝑚 + 𝜌𝑣                                                    (24) 

 

Using the aforesaid definition of 𝑝𝑡  and  𝜌𝑡 , components of Einstein tensor [Eqs. (8)- (10)] with Eq. (11) and the consistency 

condition (20), the field Eqs. (12)-(14) can be written in the following explicit form 

 

                                2
𝐴44

𝐴
+

𝐴4
2

𝐴2 = −𝜅𝑝𝑡𝑐
2 + 3𝜅𝜉𝑐2  

𝐴4

𝐴
                                             (25) 

 

            
𝐴4

2

𝐴2 = 𝜅𝜌𝑡𝑐
4                                                                   (26) 

 

3. Solutions of Field Equations 

Eqs. (25) and (26) are two field equations with four unknowns 𝑝𝑡 , 𝜌𝑡 , 𝐴 and 𝜉. 

Hence to solve the system we consider the equation of state  

 

               𝑝𝑡=
1

3
𝜌𝑡𝑐

2                                                       (27) 

 

and take a relation (Banerjee et al [1]) 

               𝜉 = 𝜉0
𝐴4

𝐴
,                                                                              (28) 

where 𝜉0 is a constant. 

Use the Eqs. (27) and (28), Eqs. (25)-(26) gives, 

 

                                                                            
𝐴44

𝐴
+ 𝛼

𝐴4

𝐴
= 0 

 

where 𝛼 = 1 −
3

2
𝜉0𝜅𝑐

2 = constant, which on integration gives 

 

                 𝐴 =   𝛼 + 1  𝑐1𝑡 + 𝑐2  
1 𝛼+1 ,                                                  (29) 

 

where 𝑐1 and 𝑐2 are constants of integration. 

Then in view of Eqs. (20), we have  

 

                𝐴 = 𝐵 =   𝛼 + 1  𝑐1𝑡 + 𝑐2  
1 𝛼+1                                        (30) 

 

The total pressure 𝑝𝑡  and energy density 𝜌𝑡  can be obtained as, 

 

               𝑝𝑡 =
𝜌𝑡𝑐

2

3
=

1

𝜅𝑐2  
𝑐1

 𝛼+1  𝑐1𝑡+𝑐2 
 

2

                                   (31) 

Considering Dirac gauge function in the form 𝛽 =
1

𝑐𝑡
 the vacuum pressure and vacuum density can be obtained as 
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                                    𝑝𝑣 =
1

𝜅𝑐2  
𝛬0+3

𝑡2 −
4𝑐1

 𝛼+1 𝑡 𝑐1𝑡+𝑐2 
+

3𝑐2𝜉0𝜅𝑐1
2

 𝛼+1 2 𝑐1𝑡+𝑐2 2 ,                                            (32) 

 

   𝜌𝑣 = −
1

𝜅𝑐4  
𝛬0+3

𝑡2 −
6𝑐1

 𝛼+1  𝑐1𝑡+𝑐2 
                                                      (33) 

 

and the matter pressure and density can be obtained as  

 

               𝑝𝑚 =
1

𝜅𝑐2  
4𝑐1

 𝛼+1 𝑡 𝑐1𝑡+𝑐2 
+

 1−3𝑐2𝜅𝜉0 𝑐1
2

  𝛼+1  𝑐1𝑡+𝑐2  2 −
𝛬0+3

𝑡2  ,                                        (34) 

 

              𝜌𝑚 = −
1

𝜅𝑐4  
6𝑐1

 𝛼+1 𝑡 𝑐1𝑡+𝑐2 
−

3𝑐1
2

  𝛼+1  𝑐1𝑡+𝑐2  2 −
𝛬0+3

𝑡2                                    (35) 

 

Thus the Bianchi –I model in scale invariant theory is given by 

 

                             𝑑𝑆𝑊
2 =

1

𝑐2𝑡2  −𝑐2𝑑𝑡2 +   𝛼 + 1  𝑐1𝑡 + 𝑐2  
2 𝛼+1  𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2                  (36) 

 

Using the transformation 𝑡 = 𝑒𝑇  the above metric can be written as  

 

   𝑑𝑆𝑊
2 = −𝑑𝑇2 + 𝑄2(𝑇) 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2                                               (37) 

where   

   𝑄 𝑇 =
  𝛼+1  𝑐1𝑒𝑇+𝑐2  

1 𝛼+1 

𝑐𝑒𝑇   

 

4 Some Physical Properties 

 

Now we study some physical properties of the model (37). The physical behavior of the model remains the same in the transformed 

time coordinate. i.e. 𝑡(0,1, ∞) → 𝑇(−∞, 1, ∞). 

Also the new time coordinate covers the time region from past to future completely, so that we can have clear picture of the model. 

The scalar expansion of the model (37) can be obtained as 

 

                𝜃 𝑇 = 3
𝑄𝑇

𝑄
= 3  

𝑐1

 𝛼+1  𝑐1𝑒𝑇+𝑐2 
− 1 ,                                           (38) 

Here 𝑄𝑇 =
𝑑𝑄

𝑑𝑇
  

 

Thus we have  

   𝜃 0 → −3  
𝛼𝑐1+ 𝛼+1 𝑐2

 𝛼+1  𝑐1+𝑐2 
 ,     

 

and 𝜃 → −3 as 𝑇 → ∞. Moreover at 𝑇 = 𝑙𝑜𝑔  
𝑐1−𝑐2 𝛼+1 

𝑐1 𝛼+1 
 , the model ceases contraction for a moment. Thus the model contracts 

without admitting any singularity during evolution. 

The shear scalar 𝜍 = 0 indicates that the shape of the universe is unchanged during the evolution. Also since 
𝜍2

𝜃2 = 0, the space-time 

is isotropized during  evolution in this theory. As the acceleration is found to be zero, the matter particles follow geodesic path in 

this theory. The vorticity w of the model vanishes, which indicates that 𝑈𝑖  is hyper surface orthogonal. 

From Eq. (35), with proper choice of parameters, we get 𝜌𝑚  0 = positive constant and  𝜌𝑚 → 0 as 𝑇 → ∞. Thus the universe starts 

evolving with constant matter density at initial epoch. 

Also it has been observed that 

 

                           
𝜌𝑚

𝜃2 = Constant at 𝑇 = 0 and 
𝜌𝑚

𝜃2 = 0 at 𝑇 = ∞,                                        (39) 

 

which confirms the homogeneity nature of the space-time during the evolution.  

The spatial volume of the model (37) is found to be  

                        𝑉 =  
  𝛼+1  𝑐1𝑒𝑇+𝑐2  

1 𝛼+1 

𝑐𝑒𝑇  

3

                                          (40) 

 

𝑉 →  
  𝛼+1  𝑐1+𝑐2  1 𝛼+1 

𝑐
 

3

 as 𝑇 → 0 and 𝑉 → 0 as 𝑇 → ∞. So the universe starts with constant volume at initial epoch and expands 

with uniform rate till infinite future, where 𝑉 = 0. 
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The Hubble parameter 𝐻 for the model (37) is given by  

  

                               𝐻 =
𝑄𝑇

𝑄
=  

𝑐1

 𝛼+1  𝑐1𝑒𝑇+𝑐2 
− 1                                      (41) 

 

which determine the present rate of expansion of the universe. However, 𝐻 0 = constant and 𝐻 → −1as  𝑇 → ∞, which indicates 

that the rate of expansion remains constant throughout the evolution. 

Also the declaration parameter 𝑞 for the model (37) can be calculated as  

 

                                                  𝑞 = −
𝑄𝑇𝑇 𝑄

𝑄𝑇
2 =  1 −  

𝑐1+𝑐2𝑒−𝑇

𝑐1 𝑐1+𝑐2𝑒−𝑇 − 𝛼+1 𝑒−𝑇 
2

                            (42) 

 

As 𝑇 → 0, 𝑞 →constant, say 𝐿. This indicates that the expansion is speeding up for 𝐿 > 0 and slowing down for 𝐿 < 0. 

For the period when  
𝑐1+𝑐2𝑒−𝑇

𝑐1 𝑐1+𝑐2𝑒−𝑇 − 𝛼+1 𝑒−𝑇 
2

> 1, we get an inflationary universe. 

 

5. Conclusions 
 

In this chapter, we have studied a Binachi type –I model in Wesson’s scale invariant theory of gravitation. The model in this case 

starts evolving at the initial epoch with a constant volume and ends at an infinite future. Also the matter density 𝜌𝑚  vanishes for 

𝛬0 = −3  
2−3𝜉0𝜅𝑐 2

4−3𝜉0𝜅𝑐 2 
2

 but 𝜌𝑚 ≠ 0 for 𝑐2 = 0. This leads to unphysical situation. Thus for a viable physical situation one should have 

𝛬0 ≠ −3  
2−3𝜉0𝜅𝑐 2

4−3𝜉0𝜅𝑐 2 
2

. Also the model in this case appears to be steady state.  
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